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Fault-tolerant logical gates
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• How do we implement a logical gate fault-tolerantly ?
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The Eastin-Knill theorem (2008)

• Transversal logical gates are not universal for QC

Restrictions on Transversal Encoded Quantum Gate Sets

Bryan Eastin* and Emanuel Knill
National Institute of Standards and Technology, Boulder, Colorado 80305, USA

(Received 28 November 2008; published 18 March 2009)

Transversal gates play an important role in the theory of fault-tolerant quantum computation due to

their simplicity and robustness to noise. By definition, transversal operators do not couple physical

subsystems within the same code block. Consequently, such operators do not spread errors within code

blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are

required, as it is invariably the case that some encoded gates cannot be implemented transversally. This

observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal.

Here we show that the ability of a quantum code to detect an arbitrary error on any single physical

subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.

DOI: 10.1103/PhysRevLett.102.110502 PACS numbers: 03.67.Lx, 03.67.Pp

Quantum computation appears to be intrinsically more
powerful than its classical counterpart. Efficient quantum
algorithms have been found for certain problems that,
using the best known classical algorithms, require resour-
ces that scale as a superpolynomial function of the problem
size [1–3]. However, implementing a computation large
enough to take advantage of such scaling properties is a
daunting challenge. Given the difficulty of constructing
quantum hardware, it seems likely that the software for
the first quantum computers will need to incorporate sig-
nificant amounts of error checking.

As in the classical case, quantum errors are rendered
detectable by encoding the system of interest into a sub-
space of a larger, typically composite, system. A quantum
code simply specifies which states of a quantum system
correspond to which logical (encoded) information states.
Errors that move states outside of the logical subspace can
be detected by measuring the projector P onto this sub-
space. Thus, an error E is detectable, in the sense that it can
be discovered or eliminated, if and only if

PEP / P:

Of course, not all errors can be detected; for any nontrivial
code there are operators that act in a nontrivial way within
the logical subspace. Most commonly, quantum codes are
designed to permit the detection of independent, local
errors and, as a consequence, are incapable of detecting
some errors that affect many subsystems.

For quantum computation, it is necessary not only to
detect errors but also to apply operators (gates) that trans-
form the logical state of the code. Even when error pro-
cesses are local and independent, however, the operations
entailed in computing can generate correlated errors from
uncorrelated ones. Thus, for error detection to be effective,
it is important that the logical operators employed during a
quantum computation be designed to limit the spread of
errors. It is particularly important that operators do not
spread errors within code blocks, where a block of a

quantum code is defined as a collection of subsystems for
which errors on subsystems in the collection are detected
independently of those on subsystems outside of it.
Managing the spread of errors is the subject of the theory
of fault-tolerant quantum computing [4,5]. One of the
primary techniques of this theory is the use of transversal
encoded gates.
We label as ‘‘transversal’’ any partition of the physical

subsystems of a code such that each part contains one
subsystem from each code block. Given a transversal
partition of a code, an operator is called transversal if it
exclusively couples subsystems within the same part. Put
another way, an operator is transversal if it couples no
subsystem of a code block to any but the corresponding
subsystem in another code block. Transversal operators are
inherently fault tolerant. They can spread errors between
code blocks, thereby increasing the number of locations at
which a code block’s error might have originated, but,
since errors on different code blocks are treated indepen-
dently, the total number of errors necessary to cause a
failure is unchanged. This is in contrast to nontransversal
operators, where, for example, an encoded gate coupling
every subsystem in a code block might convert an error on
a single subsystem into an error on every subsystem of the
code block.
In view of the above, it would be highly desirable to

carry out quantum computations exclusively using trans-
versal encoded gates. To allow for arbitrary computation, it
is necessary that the set of gates employed be universal,
that is, that it be capable of implementing any encoded
operator on the logical state space to arbitrarily high accu-
racy. However, in spite of substantial effort, no gate set for
a nontrivial quantum code has yet been found that is both
universal and transversal. Consequently, a long-standing
question in quantum information theory is whether there
exist nontrivial quantum codes for which all logical gates
can be implemented transversally. For stabilizer codes, this
question has recently been answered in the negative. Zeng,

PRL 102, 110502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

0031-9007=09=102(11)=110502(4) 110502-1

Don’t panic ! Fault-tolerant computation is still possible.



The Bravyi-Koenig theorem (2012)

• Under a more physically realistic setting

D-dim lattice

Logical gate U : low-depth unitary gate (i.e. Local unitary)

• For a stabilizer Hamiltonian in D dim, fault-
tolerantly implementable gates are restricted to 
the D-th level of the Clifford hierarchy.

???

Theorem



Clifford hierarchy (Gottesman & Chuang)
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Sets of unitary transformations on N qubits
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Logical operator cleaning

A
B

A “correctable region” supports no logical operator.

• A logical operator can be “cleaned” from a correctable region.

correctable

A
B

U

logical operator equivalent logical operator

U’

correctable



Consider a partition of the entire system into m+1 regions, denoted 
by R0, R1, ..., Rm. If all Rj’s are correctable, then transversal logical 
gates are restricted to m-th level Pm of the Clifford hierarchy.

Lemma [Hierarchy]

R0

R1

R3

R2

4 correctable 
regions

P3

(eg)



R0,  R1,  R2,  ...  Rm-1, Rm

V0

V1

Vm

... 

... 

... 

... 

... 

• Consider arbitrary Pauli logical operators V0, V1, ... Vm.

... U0

U2=K(U1,V1) ... 

Hierarchy

Pauli

Complex phase

P1 (Pauli)

Um=K(Um-1,Vm-1) ... 

... 

... 

Um-1=K(Um-2,Vm-2) ... 

Pm-2

Pm-1

Pm

goal

U1=K(U0,V0) ... 

K(A,B)=ABA*B*commutator :
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IV. CONSTANT DEPTH CIRCUITS AND
GEOMETRIC LOCALITY

Discussions so far do not rely on geometric locality of
required generators in the code, which is one of the most
important features to assess its experimental feasibility.
The underlying assumption of geometric locality is that
physical qubits are associated to particles on a regular
lattice and check operators involve only particles within
a constant sized neighborhood. More precisely, the gauge
group G may be generated by a set of Pauli operators,
each one having support restricted to a ball of diameter
⇠ = O(1). In this section, we generalize BK’s result to
topological subsystem codes that are supported on a D-
dimensional lattice with geometrically local generators.

A. Union lemma

A challenge in generalizing BK’s result is that the so-
called union lemma does apply to topological subsystem
codes. The union lemma for a topological stabilizer code
states that the union of two spatially disjoint cleanable
regions is also cleanable. Here two regions are spatially
disjoint if local stabilizer generators overlap with at most
one of the regions.

Lemma 6. [Union lemma (stabilizer code)] For a
topological stabilizer code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
stabilizer group generators {Sj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are cleanable, then the
union R

1

[ R
2

is also cleanable.

At this point, let us review the derivation of BK’s result
in order to illustrate the use of the union lemma. For a
topological stabilizer code with a growing code distance,
one is able to split the D-dimensional space into D + 1
regions Rm for m = 0, . . . , D where Rm consists of small
regions with constant size connected components which
are spatially disjoint. Let us demonstrate it for D = 2
(see Fig. 2). We first split the entire lattice into patches
of square tiles so that the diameter of local stabilizer
generators is much shorter than the spacing of tiles. This
square tiling has three geometric object; points, lines and
faces. First, we “fatten” points to create regions R

0

. We
then fatten lines and create regions R

1

. The remaining
regions are identified to be R

2

. Therefore Rm is the union
of fattened m-dimensional objects. For a D-dimensional
lattice, we start with a D-dimensional hyper-cubic tiling
and fatten m-dimensional objects to obtain Rm for m =
0, . . . , D.

Each of connected components in Rm is cleanable as
the code distance is growing with the system size n. Also
connected components in Rm are spatially disjoint. Due
to the union lemma, the union of spatially disjoint small
regions is correctable, and thus Rm is correctable. Then
lemma 5 implies that transversally implementable logical

gates are restricted to PD, recovering BK’s result (The-
orem 1).

FIG. 2: The partition of a two-dimensional lattice into three
regions R

0

, R
1

, R
2

which consist of smaller regions that are
correctable and spatially disjoint.

For a topological subsystem code, two regions are said
to be spatially disjoint if local gauge generators may over-
lap with at most one of the regions. Unlike a topological
stabilizer code, however, geometric locality of stabilizer
generators is not always guaranteed since the stabilizer
subgroup S is defined to be the center of the gauge group
G, and generators of S are products of multiple local
gauge generators in general. As such, the union lemma
holds only for dressed-cleanable regions as summarized
below.

Lemma 7. [Union lemma (subsystem code)] For a
topological subsystem code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
gauge group generators {Gj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are dressed-cleanable,
then the union R

1

[ R
2

is also dressed-cleanable.

It is worth emphasizing that the union lemma for bare-
cleanable regions are recovered for a topological subsys-
tem code if its stabilizer subgroup admits a complete set
of geometrically local generators. This is the case for
Bombin’s gauge color code is a three-dimensional sub-
system code.

B. Fault-tolerance and non-local stabilizer
generators

In addition to the technical di�culty, the breakdown of
the union lemma seems to taint fault-tolerance of a sub-
system code. Emergence of geometrically non-local stabi-
lizer generators prevents us from having the union lemma
for bare-cleanable regions. Indeed, this is the case for two
and three-dimensional quantum compass models [19, 22].
We should yet mention that geometrically non-local sta-
bilizer generators are hard to measure reliably and hence
undesirable for physical realizations. Namely, when non-
local stabilizer generators are supported by a large num-

Proof of the Bravyi-Koenig theorem

• We can split D-dimensional system into D+1 correctable regions.

(eg) 2 dim

Fault-tolerant gates are in P2

*Union of spatially disjoint correctable 
regions = correctable region

*This is not the case for subsystem codes.
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Erasure Threshold

• Some qubits may be lost (removal errors)... 

eg) escape from the trap
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The Gottesman-Knill theorem tells that any quantum
circuit composed exclusively from Cli↵ord gates in P

2

,
with computational basis preparation and measurement,
may be e�ciently simulated by a classical computer [6].
In contrast, incorporating any additional non-Cli↵ord
gate to P

2

results in a universal gate set. In theory, gates
in the Cli↵ord group can be implemented with arbitrarily
high precision by using concatenated stabilizer codes [7].
Realistic systems also o↵er decoherence-free implementa-
tion of some Cli↵ord gates. For instance, braiding of Ising
anyons, that are believed to exist in the fractional quan-
tum Hall e↵ect state at filling fraction ⌫ = 5/2, imple-
ments certain Cli↵ord gates with an estimated error-rate
being 10�30 [8]. For this reason, it is important to fault-
tolerantly perform non-Cli↵ord logical gates outside of
P

2

.

B. Summary of results

Let us now summarize the main contributions of this
work. We begin by providing a self-contained and ar-
guably simpler derivation of BK’s result. We then de-
rive a key technical lemma to assess fault-tolerant imple-
mentability of logical gates for both stabilizer and sub-
system error-correcting codes (lemma 5 in section II).

In addition, there are four main original contributions.
Below, we provide a preliminary statement of each, de-
ferring a more rigorous treatment to later sections.

1. No-go result for self-correction

First of all, we show that the property of self-correction
imposes a further restriction on logical gates imple-
mentable by constant depth local circuits. Namely, we
find that the assumption of having no string-like logical
operators reduces the level of the implementable Cli↵ord
hierarchy by one with respect to BK’s result.

Theorem. [Self-correction] If a D-dimensional stabi-
lizer Hamiltonian, consisting of geometrically local terms
with bounded norms, has a macroscopic energy barrier,
the set of fault-tolerant logical gates, implementable by
constant depth local circuits, is restricted to PD�1

.

This theorem allows us to obtain a new no-go result for
self-correcting quantum memory in three spatial dimen-
sions; a three-dimensional topological stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have
a macroscopic energy barrier. The proof is presented in
Section V. The result establishes a somewhat surpris-
ing connection between ground state properties and ex-
citation energy landscape. While technically simple, this
observation is arguably the most interesting.

2. Upper bound on code distance

Our second result concerns a tradeo↵ between the code
distance and fault-tolerant implementability of logical
gates. Namely, we find that implementability of logi-
cal gates from the higher-level Cli↵ord hierarchy reduces
an upper bound on the code distance of a topological
stabilizer code.

Theorem. [Code distance] If a stabilizer code with ge-
ometrically local generators in D spatial dimensions ad-
mits a fault-tolerantly implementable logical gate U 2 Pm

for m � 2 (but U 62 Pm�1

), then its code distance is up-
per bounded by d  O(LD+1�m).

For a code with a non-Cli↵ord gate (m > 2), this re-
sult improves the previous best bound d  O(LD�1) for
topological stabilizer codes [9]. The bound is found to be
tight for m = D as Bombin’s topological color codes satu-
rates it [10, 11]. The proof is presented in Section V. The
theorem also applies to a topological subsystem code if
its stabilizer subgroup admits a complete set of geomet-
rically local generators. Such subsystem codes include
Bombin’s topological gauge color code [11].

3. Loss threshold

Our third result relates the loss threshold in stabi-
lizer and subsystem error-correcting codes with the set
of transversally implementable logical gates.

Theorem. [Loss threshold] Suppose we have a fam-
ily of subsystem codes with a loss tolerance pl > 1/n for
some natural number n. Then, any transversally imple-
mentable logical gate must belong to Pn�1

.

We would like to emphasize that the above theorem
does not assume geometric locality of generators or lat-
tice structures, and holds for arbitrary stabilizer and sub-
system codes. The proof is presented in Section III.

4. Subsystem code and the Cli↵ord hierarchy

Finally, the main technical result is to generalize BK’s
result to subsystem codes with local generators. A di�-
culty is that the so-called union lemma does not apply to
a topological subsystem code [12, 13]. Minimal supple-
mentary assumptions, such as a finite loss threshold for
the code and a logarithmically increasing code distance,
are required in order to recover the same thesis as BK’s
for fault-tolerant logical gates.

Theorem. [Subsystem code] Consider a family of
subsystem codes with geometrically local gauge generators
in D spatial dimensions such that the code has a con-
stant loss threshold and a code distance growing at least
logarithmically in the number of physical qubits. Then,

Proof sketch

• Assign each qubit to n regions uniformly at random

R1, R2, ... Rn

• All the regions are cleanable since 
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Lemma 5. Let {Rj}j2[0,m]

be a set of regions where R
0

is bare-cleanable and each of the regions {Rj}j2[1,m]

is
dressed-cleanable in a subsystem code. If a dressed logical
unitary U is supported on the union

S
j2[0,m]

Rj and is

transversal with respect to regions Rj, then the logical
action [U ]L of U on the logical qubits correspond to an
element of Pm (the m-th level of the Cli↵ord hierarchy).

The above theorem does not require geometric locality
of the gauge or stabilizer generators, and thus applies to
arbitrary subsystem codes.

Proof. The proof proceeds by induction. Assuming m =
0, the operator U is fully supported on a bare-correctable
region R

0

. All the bare logical Pauli operators may be
supported on R

0

c hence they must commute with U .
Thus, [U ]L must be a trivial logical operator in P

0

(pro-
portional to identity).

Let us now prove the inductive step. We assume that
all the dressed transversal operators supported on the
union R

0

[ Sm
j=1

Rj are in Pm. Consider a transversal
dressed logical operator U such that

supp(U) ✓ R
0

[
m+1[

j=1

Rj . (4)

By definition, the logical action of U has a tensor prod-
uct form [U ] = [U ]L ⌦ [U ]G where [U ]L, [U ]G denote the
logical actions on the logical and gauge qubits respec-
tively. Since Rm+1

is dressed-cleanable, all the dressed
Pauli operators may be supported on Rm+1

c, and their
logical actions [P ] = [P ]L ⌦ [P ]G have a tensor prod-
uct form due to lemma 2. Hence, the group commutator
UPU †P † is also a dressed logical operator with a tensor
product form. Furthermore, transversality of U and P
with respect to Rj mandates

supp(UPU †P †) ✓ R
0

[
m[

j=1

Rj (5)

which implies [UPU †P †]L 2 Pm. By definition of the
Cli↵ord hierarchy, [U ]L 2 Pm+1

.

III. LOSS-TOLERANCE AND TRANSVERSAL
LOGICAL GATES

One implication that may be obtained at this point
is a tradeo↵ between particle loss threshold and the set
of achievable transversal gates. Indeed, we will see that
increasing the first comes at the expense of restricting
the second.

A highly desirable property for quantum error-
correcting codes is that they must, with high probabil-
ity, tolerate errors (such as depolarization) on a constant
fraction pe of randomly chosen physical qubits. Here,
pe is called an error threshold for a family of codes if,
the probability of correcting independent and identically

distributed errors, occurring with probability p < pe, ap-
proaches to unity for members of the family with increas-
ingly large number of physical qubits.

An important form of errors is erasure errors which
correspond to loss of physics qubits from the system. In
addition to the fact that loss errors are unavoidable in
realistic physical systems, the loss-tolerance is necessary
for quantum error-correcting codes to have a finite er-
ror threshold. Namely, any form of depolarizing noise
is more severe than qubit loss since, in the latter, full
information on the location of errors is available. For-
mally, erasure errors are modeled by extending the space
associated to each physical particle with one additional
state |li which indicates loss of the corresponding par-
ticle. An error-correcting recovery map for loss errors
may mimic the one for depolarizing noise by mapping all
particles marked as |li to the fixed-point of correspond-
ing depolarizing channel. Hence, the loss threshold pl

must necessarily be no smaller than any depolarization
threshold pl � pe.

The following corollary elucidates the existing tension
between loss-threshold and the set of transversally im-
plementable gates.

Theorem 2. Suppose we have a family of subsystem
codes with a loss tolerance pl > 1/n for some natural
number n. Then, any transversally implementable logical
gate must belong to Pn�1

.

Proof. Suppose pl > 1/n, and assign each qubit to one
of n regions {Rj}j2[1,n]

uniformly at random. Each of
the regions chosen this way will be correctable with a
probability which is arbitrarily close to unity as we take
larger codes from the family. Finally, we may conclude by
applying lemma 5 to the n correctable regions obtained in
this way, which are both bare and dressed cleanable.

The above result applies to arbitrary stabilizer and
subsystem codes, and is not restricted to codes with ge-
ometrically local generators.

Example 1. The toric code saturates the bound of the-
orem 2 in that it has a loss threshold of pl = 1/2 > 1/3
and can still transversely implement some logical opera-
tors in P

2

(such as CNOT) [21].

Example 2. Reed-Muller code [[2m � 1, 1, 3]] admits
transversal implementation of ⇡/2m�1 phase shift which
belongs to Pm [6]. As a family of codes with increasing
m, it must have a zero loss threshold.

Example 3. D-dimensional topological color code ad-
mits transversal implementation of gates in PD but not of
gates in PD+1

. Its loss threshold is hence upper bounded
by 1/D. This conclusion may likely be recovered by other
arguments related to percolation in D-dimensional lat-
tices.

• Transversal gates must be in Pn-1
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The Gottesman-Knill theorem tells that any quantum
circuit composed exclusively from Cli↵ord gates in P

2

,
with computational basis preparation and measurement,
may be e�ciently simulated by a classical computer [6].
In contrast, incorporating any additional non-Cli↵ord
gate to P

2

results in a universal gate set. In theory, gates
in the Cli↵ord group can be implemented with arbitrarily
high precision by using concatenated stabilizer codes [7].
Realistic systems also o↵er decoherence-free implementa-
tion of some Cli↵ord gates. For instance, braiding of Ising
anyons, that are believed to exist in the fractional quan-
tum Hall e↵ect state at filling fraction ⌫ = 5/2, imple-
ments certain Cli↵ord gates with an estimated error-rate
being 10�30 [8]. For this reason, it is important to fault-
tolerantly perform non-Cli↵ord logical gates outside of
P

2

.

B. Summary of results

Let us now summarize the main contributions of this
work. We begin by providing a self-contained and ar-
guably simpler derivation of BK’s result. We then de-
rive a key technical lemma to assess fault-tolerant imple-
mentability of logical gates for both stabilizer and sub-
system error-correcting codes (lemma 5 in section II).

In addition, there are four main original contributions.
Below, we provide a preliminary statement of each, de-
ferring a more rigorous treatment to later sections.

1. No-go result for self-correction

First of all, we show that the property of self-correction
imposes a further restriction on logical gates imple-
mentable by constant depth local circuits. Namely, we
find that the assumption of having no string-like logical
operators reduces the level of the implementable Cli↵ord
hierarchy by one with respect to BK’s result.

Theorem. [Self-correction] If a D-dimensional stabi-
lizer Hamiltonian, consisting of geometrically local terms
with bounded norms, has a macroscopic energy barrier,
the set of fault-tolerant logical gates, implementable by
constant depth local circuits, is restricted to PD�1

.

This theorem allows us to obtain a new no-go result for
self-correcting quantum memory in three spatial dimen-
sions; a three-dimensional topological stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have
a macroscopic energy barrier. The proof is presented in
Section V. The result establishes a somewhat surpris-
ing connection between ground state properties and ex-
citation energy landscape. While technically simple, this
observation is arguably the most interesting.

2. Upper bound on code distance

Our second result concerns a tradeo↵ between the code
distance and fault-tolerant implementability of logical
gates. Namely, we find that implementability of logi-
cal gates from the higher-level Cli↵ord hierarchy reduces
an upper bound on the code distance of a topological
stabilizer code.

Theorem. [Code distance] If a stabilizer code with ge-
ometrically local generators in D spatial dimensions ad-
mits a fault-tolerantly implementable logical gate U 2 Pm

for m � 2 (but U 62 Pm�1

), then its code distance is up-
per bounded by d  O(LD+1�m).

For a code with a non-Cli↵ord gate (m > 2), this re-
sult improves the previous best bound d  O(LD�1) for
topological stabilizer codes [9]. The bound is found to be
tight for m = D as Bombin’s topological color codes satu-
rates it [10, 11]. The proof is presented in Section V. The
theorem also applies to a topological subsystem code if
its stabilizer subgroup admits a complete set of geomet-
rically local generators. Such subsystem codes include
Bombin’s topological gauge color code [11].

3. Loss threshold

Our third result relates the loss threshold in stabi-
lizer and subsystem error-correcting codes with the set
of transversally implementable logical gates.

Theorem. [Loss threshold] Suppose we have a fam-
ily of subsystem codes with a loss tolerance pl > 1/n for
some natural number n. Then, any transversally imple-
mentable logical gate must belong to Pn�1

.

We would like to emphasize that the above theorem
does not assume geometric locality of generators or lat-
tice structures, and holds for arbitrary stabilizer and sub-
system codes. The proof is presented in Section III.

4. Subsystem code and the Cli↵ord hierarchy

Finally, the main technical result is to generalize BK’s
result to subsystem codes with local generators. A di�-
culty is that the so-called union lemma does not apply to
a topological subsystem code [12, 13]. Minimal supple-
mentary assumptions, such as a finite loss threshold for
the code and a logarithmically increasing code distance,
are required in order to recover the same thesis as BK’s
for fault-tolerant logical gates.

Theorem. [Subsystem code] Consider a family of
subsystem codes with geometrically local gauge generators
in D spatial dimensions such that the code has a con-
stant loss threshold and a code distance growing at least
logarithmically in the number of physical qubits. Then,

Remarks

• Toric code has p=1/2 threshold (related to percolation). 

It has a transversal P2 gate (CNOT gate)

• A family of codes with growing n is not fault-tolerant.

• Topological color code in D-dim has PD gate, so its loss 
threshold is less than 1/D.
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The Gottesman-Knill theorem tells that any quantum
circuit composed exclusively from Cli↵ord gates in P

2

,
with computational basis preparation and measurement,
may be e�ciently simulated by a classical computer [6].
In contrast, incorporating any additional non-Cli↵ord
gate to P

2

results in a universal gate set. In theory, gates
in the Cli↵ord group can be implemented with arbitrarily
high precision by using concatenated stabilizer codes [7].
Realistic systems also o↵er decoherence-free implementa-
tion of some Cli↵ord gates. For instance, braiding of Ising
anyons, that are believed to exist in the fractional quan-
tum Hall e↵ect state at filling fraction ⌫ = 5/2, imple-
ments certain Cli↵ord gates with an estimated error-rate
being 10�30 [8]. For this reason, it is important to fault-
tolerantly perform non-Cli↵ord logical gates outside of
P

2

.

B. Summary of results

Let us now summarize the main contributions of this
work. We begin by providing a self-contained and ar-
guably simpler derivation of BK’s result. We then de-
rive a key technical lemma to assess fault-tolerant imple-
mentability of logical gates for both stabilizer and sub-
system error-correcting codes (lemma 5 in section II).

In addition, there are four main original contributions.
Below, we provide a preliminary statement of each, de-
ferring a more rigorous treatment to later sections.

1. No-go result for self-correction

First of all, we show that the property of self-correction
imposes a further restriction on logical gates imple-
mentable by constant depth local circuits. Namely, we
find that the assumption of having no string-like logical
operators reduces the level of the implementable Cli↵ord
hierarchy by one with respect to BK’s result.

Theorem. [Self-correction] If a D-dimensional stabi-
lizer Hamiltonian, consisting of geometrically local terms
with bounded norms, has a macroscopic energy barrier,
the set of fault-tolerant logical gates, implementable by
constant depth local circuits, is restricted to PD�1

.

This theorem allows us to obtain a new no-go result for
self-correcting quantum memory in three spatial dimen-
sions; a three-dimensional topological stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have
a macroscopic energy barrier. The proof is presented in
Section V. The result establishes a somewhat surpris-
ing connection between ground state properties and ex-
citation energy landscape. While technically simple, this
observation is arguably the most interesting.

2. Upper bound on code distance

Our second result concerns a tradeo↵ between the code
distance and fault-tolerant implementability of logical
gates. Namely, we find that implementability of logi-
cal gates from the higher-level Cli↵ord hierarchy reduces
an upper bound on the code distance of a topological
stabilizer code.

Theorem. [Code distance] If a stabilizer code with ge-
ometrically local generators in D spatial dimensions ad-
mits a fault-tolerantly implementable logical gate U 2 Pm

for m � 2 (but U 62 Pm�1

), then its code distance is up-
per bounded by d  O(LD+1�m).

For a code with a non-Cli↵ord gate (m > 2), this re-
sult improves the previous best bound d  O(LD�1) for
topological stabilizer codes [9]. The bound is found to be
tight for m = D as Bombin’s topological color codes satu-
rates it [10, 11]. The proof is presented in Section V. The
theorem also applies to a topological subsystem code if
its stabilizer subgroup admits a complete set of geomet-
rically local generators. Such subsystem codes include
Bombin’s topological gauge color code [11].

3. Loss threshold

Our third result relates the loss threshold in stabi-
lizer and subsystem error-correcting codes with the set
of transversally implementable logical gates.

Theorem. [Loss threshold] Suppose we have a fam-
ily of subsystem codes with a loss tolerance pl > 1/n for
some natural number n. Then, any transversally imple-
mentable logical gate must belong to Pn�1

.

We would like to emphasize that the above theorem
does not assume geometric locality of generators or lat-
tice structures, and holds for arbitrary stabilizer and sub-
system codes. The proof is presented in Section III.

4. Subsystem code and the Cli↵ord hierarchy

Finally, the main technical result is to generalize BK’s
result to subsystem codes with local generators. A di�-
culty is that the so-called union lemma does not apply to
a topological subsystem code [12, 13]. Minimal supple-
mentary assumptions, such as a finite loss threshold for
the code and a logarithmically increasing code distance,
are required in order to recover the same thesis as BK’s
for fault-tolerant logical gates.

Theorem. [Subsystem code] Consider a family of
subsystem codes with geometrically local gauge generators
in D spatial dimensions such that the code has a con-
stant loss threshold and a code distance growing at least
logarithmically in the number of physical qubits. Then,

One additional remark (due to Leonid Pryadko)

Consider a stabilizer code with at most k-body generators.

If the code has transversal PD logical gate, then

k > O(D)
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If a stabilizer Hamiltonian in 3 dimensions has fault-
tolerantly implementable non-Clifford gates, then the 
energy barrier is constant.

Theorem [Self-correction]
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In this section, we derive a new no-go result on three
dimensional self-correcting quantum memory that arises
from fault-tolerant implementability of a non-Cli↵ord
gate. In particular, we show that a stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have a
macroscopic energy barrier, and thus its quantum mem-
ory time is upper bounded by some constant independent
of the system size n. We then derive an upper bound
on the code distance of topological stabilizer codes with
fault-tolerant logical gates from the higher-level Cli↵ord
hierarchy.

A. Self-correction and fault-tolerance

For a topological stabilizer code, the stabilizer Hamil-
tonian is composed of geometrically local operators in
the stabilizer group: H = � P

j Sj where Sj 2 S. A
non-rigorous yet commonly used proxy to assess whether
self-correction can be achieved is the presence of a macro-
scopic energy barrier that scale with the system size.
Macroscopic energy barrier seems to be a necessary yet
insu�cient condition for the system to exhibit macro-
scopic memory time [44]. For stabilizer Hamiltonians,
the presence of string-like logical operators implies the
absence of a macroscopic energy barrier [45].

Here, we find a tradeo↵ on fault-tolerant logical gates
arising from a macroscopic energy barrier in a stabilizer
Hamiltonian.

Theorem 5. If a stabilizer Hamiltonian in D spatial
dimensions has a macroscopic energy barrier, the set of
fault-tolerant logical gates is restricted to PD�1

.

Proof. Let R
0

, R
1

, . . . , RD�1

be regions which jointly
cover the whole lattice. Each region is a collection of
disjoint parallel tubes with a fixed orientation (see Fig.
4). This covering can generically be achieved for a D-
dimensional lattice. The presence of a macroscopic en-
ergy barrier implies the absence of string-like logical op-
erators. Since there are no logical operators supported
on individual tubes, there are no logical operators sup-
ported on any of single regions Rj due to the union
lemma. In other words, regions Rj are cleanable. Ap-
plying lemma 8, we conclude that constant depth logical
gates should be restricted to PD�1

.

Haah [30, 31] provided the first example of a three-
dimensional topological stabilizer code which is free from
of string-like logical operators. The code is defined on a
three dimensional L⇥L⇥L cubic lattice with an energy
barrier scaling as O(log L). There also exist a number of
three-dimensional translation symmetric stabilizer codes
which are free from string-like logical operators [32, 33].
By theorem 5, for D = 3, the presence of a macroscopic
energy barrier implies that the set of fault-tolerant logical
gates is restricted to P

2

.

Corollary 2. Haah’s 3D stabilizer code [30] has no con-
stant depth logical gates outside of P

2

.

FIG. 4: The partition of the lattice into R
0

, R
1

, . . . , RD�1

for
D = 3.

A di↵erent approach to construct stabilizer codes with
a macroscopic energy barrier has been proposed by Mich-
nicki [34], who introduced the notion of code welding to
construct new codes by combining existing ones. The
welding technique leads to a construction of a topolog-
ical stabilizer code with a polynomially growing energy
barrier in three spatial dimensions. Our theorem 5 also
applies to this code.

Corollary 3. Michnicki’s 3D welded stabilizer code has
no constant depth logical gates outside of P

2

.

A model of a six-dimensional self-correcting quantum
memory with fault-tolerantly implementable non-Cli↵ord
gates has been proposed [35]. An intriguing question is
whether such a code may exist in four (or five) spatial
dimensions or not.

We then move to discussion on topological subsystem
codes. A generic recipe to construct Hamiltonians for
topological subsystem codes is not known. A candidate
Hamiltonian, often discussed in the literature, is com-
posed of geometrically local terms in the gauge group:
H = � P

j Gj [46]. Regardless of the choice of the Hamil-
tonian, the presence of bare-logical operators with string-
like support implies the absence of an energy barrier as
long as terms in the Hamiltonian consist only of local
generators of the gauge group G.

For topological subsystem codes, we obtain a less re-
strictive tradeo↵ between fault-tolerant implementability
and geometric non-locality of logical gates.

Corollary 4. If a topological subsystem code in D spa-
tial dimensions has macroscopic energy barrier, the set
of transversal operators is restricted to PD.

The three-dimensional gauge color code has transver-
sal gates in P

2

and do not have string-like bare logical
operators, and hence are not ruled out from having a
macroscopic energy barrier.

Proof sketch

• Consider a partition into R0, R1, R2.

• Suppose that there is no string-like 
logical operators.

• Then, R0, R1, R2 are cleanable, so the 
code has P2 (Clifford gate) at most. 

• String-like logical operators imply 
deconfined particles. 



Theorem [Self-correction]

Remark

• Haah’s 3dim cubic code (log(L) barrier) does not 
have non-Clifford gates.

• Michnicki’s 3dim welded code (poly(L) barrier) does not 
have non-Clifford gates.

• 6-dim color code ((4,2)-construction) has non-Clifford 
gate and O(L) barrier.

If a stabilizer Hamiltonian in 3 dimensions has fault-
tolerantly implementable non-Clifford gates, then the 
energy barrier is constant.

* A talk by Brell 
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If a topological stabilizer code in D dimensions has a m-th 
level logical gate, then its code distance is upper bounded 
by

Theorem [Code distance]

2

The Gottesman-Knill theorem tells that any quantum
circuit composed exclusively from Cli↵ord gates in P

2

,
with computational basis preparation and measurement,
may be e�ciently simulated by a classical computer [6].
In contrast, incorporating any additional non-Cli↵ord
gate to P

2

results in a universal gate set. In theory, gates
in the Cli↵ord group can be implemented with arbitrarily
high precision by using concatenated stabilizer codes [7].
Realistic systems also o↵er decoherence-free implementa-
tion of some Cli↵ord gates. For instance, braiding of Ising
anyons, that are believed to exist in the fractional quan-
tum Hall e↵ect state at filling fraction ⌫ = 5/2, imple-
ments certain Cli↵ord gates with an estimated error-rate
being 10�30 [8]. For this reason, it is important to fault-
tolerantly perform non-Cli↵ord logical gates outside of
P

2

.

B. Summary of results

Let us now summarize the main contributions of this
work. We begin by providing a self-contained and ar-
guably simpler derivation of BK’s result. We then de-
rive a key technical lemma to assess fault-tolerant imple-
mentability of logical gates for both stabilizer and sub-
system error-correcting codes (lemma 5 in section II).

In addition, there are four main original contributions.
Below, we provide a preliminary statement of each, de-
ferring a more rigorous treatment to later sections.

1. No-go result for self-correction

First of all, we show that the property of self-correction
imposes a further restriction on logical gates imple-
mentable by constant depth local circuits. Namely, we
find that the assumption of having no string-like logical
operators reduces the level of the implementable Cli↵ord
hierarchy by one with respect to BK’s result.

Theorem. [Self-correction] If a D-dimensional stabi-
lizer Hamiltonian, consisting of geometrically local terms
with bounded norms, has a macroscopic energy barrier,
the set of fault-tolerant logical gates, implementable by
constant depth local circuits, is restricted to PD�1

.

This theorem allows us to obtain a new no-go result for
self-correcting quantum memory in three spatial dimen-
sions; a three-dimensional topological stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have
a macroscopic energy barrier. The proof is presented in
Section V. The result establishes a somewhat surpris-
ing connection between ground state properties and ex-
citation energy landscape. While technically simple, this
observation is arguably the most interesting.

2. Upper bound on code distance

Our second result concerns a tradeo↵ between the code
distance and fault-tolerant implementability of logical
gates. Namely, we find that implementability of logi-
cal gates from the higher-level Cli↵ord hierarchy reduces
an upper bound on the code distance of a topological
stabilizer code.

Theorem. [Code distance] If a stabilizer code with ge-
ometrically local generators in D spatial dimensions ad-
mits a fault-tolerantly implementable logical gate U 2 Pm

for m � 2 (but U 62 Pm�1

), then its code distance is up-
per bounded by d  O(LD+1�m).

For a code with a non-Cli↵ord gate (m > 2), this re-
sult improves the previous best bound d  O(LD�1) for
topological stabilizer codes [9]. The bound is found to be
tight for m = D as Bombin’s topological color codes satu-
rates it [10, 11]. The proof is presented in Section V. The
theorem also applies to a topological subsystem code if
its stabilizer subgroup admits a complete set of geomet-
rically local generators. Such subsystem codes include
Bombin’s topological gauge color code [11].

3. Loss threshold

Our third result relates the loss threshold in stabi-
lizer and subsystem error-correcting codes with the set
of transversally implementable logical gates.

Theorem. [Loss threshold] Suppose we have a fam-
ily of subsystem codes with a loss tolerance pl > 1/n for
some natural number n. Then, any transversally imple-
mentable logical gate must belong to Pn�1

.

We would like to emphasize that the above theorem
does not assume geometric locality of generators or lat-
tice structures, and holds for arbitrary stabilizer and sub-
system codes. The proof is presented in Section III.

4. Subsystem code and the Cli↵ord hierarchy

Finally, the main technical result is to generalize BK’s
result to subsystem codes with local generators. A di�-
culty is that the so-called union lemma does not apply to
a topological subsystem code [12, 13]. Minimal supple-
mentary assumptions, such as a finite loss threshold for
the code and a logarithmically increasing code distance,
are required in order to recover the same thesis as BK’s
for fault-tolerant logical gates.

Theorem. [Subsystem code] Consider a family of
subsystem codes with geometrically local gauge generators
in D spatial dimensions such that the code has a con-
stant loss threshold and a code distance growing at least
logarithmically in the number of physical qubits. Then,

Remark

• Bravyi-Terhal bound for D-dim stabilizer codes (previous best)
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B. Upper bound on code distance

Geometric non-locality of logical operators, such as
no-string hypothesis, imposes a restriction on fault-
tolerantly implementable gates in topological stabilizer
codes as in theorem 5. Reversing the argument, one
may observe that fault-tolerant implementability of logi-
cal gates from the higher-level Cli↵ord hierarchy imposes
a restriction on geometric non-locality of logical opera-
tors.

Here we find a tradeo↵ between the code distance and
fault-tolerant implementability of logical gates.

Theorem 6. If a topological stabilizer code in D spatial
dimensions admits a constant depth logical gate from Pm,
but outside of Pm�1

, its code distance is upper bounded
by d  O(LD+1�m).

Proof. Let R
0

, R
1

, . . . , Rm�1

be regions which jointly
cover the whole lattice. Each region is a collection of
disjoint parallel D + 1 � m-dimensional objects (Fig. 4
corresponds to the case for D = 3 and m = 3). Sup-
pose that there is no logical operator supported on any
of single regions Rj . Applying lemma 5, implementable
logical operators are restricted to Pm�1

, leading to a
contradiction. Thus, at least one region Rj supports a
logical operator. Due to the union lemma, such a log-
ical operator can be supported on a single D + 1 � m-
dimensional object whose volume is O(LD+1�m), which
implies d  O(LD+1�m).

Bravyi and Terhal have derived an upper bound on
the code distance for topological stabilizer and subsys-
tem codes: d  O(LD�1) [9]. Whether the Bravyi-Terhal
bound is tight for D � 3 remains open. For m = 2, our
bound is reduced to the Bravyi-Terhal bound. Theo-
rem 6 implies that fault-tolerant implementability of a
non-Cli↵ord gate imposes a further restriction on the
code distance of topological stabilizer codes.

Topological color code, proposed in a seminal work by
Bombin [10, 11], is a D-dimensional topological stabilizer
code that admits transversal logical gates from the D-th
level of the Cli↵ord hierarchy. The code has a string-like
logical operator, and thus d = O(L), implying that our
bound is tight for m = D.

Example 4. Bombin’s D-dimensional topological color
code saturates the bound in theorem 6.

It would be interesting if this hypothesis could be com-
bined with the code threshold hypothesis to strengthen
the conclusion.

VI. CONCLUSIONS

We have provided several extensions of BK’s charac-
terization of fault-tolerantly implantable logical gates.
Our results are summarized as follows: (i) A

three-dimensional stabilizer Hamiltonian with a fault-
tolerantly implementable non-Cli↵ord gate is not self-
correcting. (ii) The code distance of a D-dimensional
topological stabilizer code with non-trivial m-th level
logical gate is upper bounded by O(LD+1�m). (iii) A
loss threshold of a subsystem code with non-trivial m-th
level transversal logical gate is upper bounded by 1/m.
(iv) Fault-tolerantly implementable logical gates in a D-
dimensional topological subsystem code belong to the D-
th level PD in the presence of a finite error threshold.

Open questions include the possibility of further gen-
eralizing the result of Bravyi and König to other fami-
lies of codes such as frustration-free commuting projector
codes. In an upcoming article, we will present a Bravyi
and König type characterization of logical operations im-
plementable by constant depth circuits in the context of
topological quantum field theories.

Another interesting direction to extend these results
concerns topological codes with non-local gates, and
quantum LDPC codes. It has been recently proven by
the authors that, for families of the Toric code and color
code, non-local constant depth gates do not increase the
level of the implementable Cli↵ord hierarchy. Dissipative
dynamics may also be utilized for fault-tolerant logical
implementation of topological codes [36].

The definition of quantum phases, widely accepted in
the literature, is that, two ground state wavefunctions
belong to di↵erent phases if there is no local unitary
transformation connecting them [37]. Yet even within
the ground space of a Hamiltonian, it is possible that
di↵erent ground states are in di↵erent “phases”. Per-
haps, Bravyi and König type characterization will give a
coherent insight on classification of ground state wave-
functions with long-range entanglement.

Fault-tolerant implementability of non-Cli↵ord logical
gates is an important ingredient for the magic state dis-
tillation protocol [38]. An interesting future problem in-
cludes the asymptotic rate of the number of magic states
that can be distilled with a desired precision. Finally,
it may be interesting to study the gauge-fixing tech-
nique [11, 39] and code concatenation [40] from the view-
point of Bravyi and König type characterization.
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• Non-Clifford gate (m>2), our bound is tighter.

• D-dim color code has d=L, saturating the bound.
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eg) Kitaev’s honeycomb model, Bacon-Shor code, gauge color code

• Subsystem codes require fewer-body terms.

Main result

For a D-dimensional subsystem code with local 
generators, fault-tolerantly implementable logical 
gates are restricted to PD if the code is fault-tolerant.
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• Non-local stabilizer operator is closely related to “gapless” spectrum 
in the Hamiltonian.
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IV. CONSTANT DEPTH CIRCUITS AND
GEOMETRIC LOCALITY

Discussions so far do not rely on geometric locality of
required generators in the code, which is one of the most
important features to assess its experimental feasibility.
The underlying assumption of geometric locality is that
physical qubits are associated to particles on a regular
lattice and check operators involve only particles within
a constant sized neighborhood. More precisely, the gauge
group G may be generated by a set of Pauli operators,
each one having support restricted to a ball of diameter
⇠ = O(1). In this section, we generalize BK’s result to
topological subsystem codes that are supported on a D-
dimensional lattice with geometrically local generators.

A. Union lemma

A challenge in generalizing BK’s result is that the so-
called union lemma does apply to topological subsystem
codes. The union lemma for a topological stabilizer code
states that the union of two spatially disjoint cleanable
regions is also cleanable. Here two regions are spatially
disjoint if local stabilizer generators overlap with at most
one of the regions.

Lemma 6. [Union lemma (stabilizer code)] For a
topological stabilizer code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
stabilizer group generators {Sj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are cleanable, then the
union R

1

[ R
2

is also cleanable.

At this point, let us review the derivation of BK’s result
in order to illustrate the use of the union lemma. For a
topological stabilizer code with a growing code distance,
one is able to split the D-dimensional space into D + 1
regions Rm for m = 0, . . . , D where Rm consists of small
regions with constant size connected components which
are spatially disjoint. Let us demonstrate it for D = 2
(see Fig. 2). We first split the entire lattice into patches
of square tiles so that the diameter of local stabilizer
generators is much shorter than the spacing of tiles. This
square tiling has three geometric object; points, lines and
faces. First, we “fatten” points to create regions R

0

. We
then fatten lines and create regions R

1

. The remaining
regions are identified to be R

2

. Therefore Rm is the union
of fattened m-dimensional objects. For a D-dimensional
lattice, we start with a D-dimensional hyper-cubic tiling
and fatten m-dimensional objects to obtain Rm for m =
0, . . . , D.

Each of connected components in Rm is cleanable as
the code distance is growing with the system size n. Also
connected components in Rm are spatially disjoint. Due
to the union lemma, the union of spatially disjoint small
regions is correctable, and thus Rm is correctable. Then
lemma 5 implies that transversally implementable logical

gates are restricted to PD, recovering BK’s result (The-
orem 1).

FIG. 2: The partition of a two-dimensional lattice into three
regions R

0

, R
1

, R
2

which consist of smaller regions that are
correctable and spatially disjoint.

For a topological subsystem code, two regions are said
to be spatially disjoint if local gauge generators may over-
lap with at most one of the regions. Unlike a topological
stabilizer code, however, geometric locality of stabilizer
generators is not always guaranteed since the stabilizer
subgroup S is defined to be the center of the gauge group
G, and generators of S are products of multiple local
gauge generators in general. As such, the union lemma
holds only for dressed-cleanable regions as summarized
below.

Lemma 7. [Union lemma (subsystem code)] For a
topological subsystem code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
gauge group generators {Gj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are dressed-cleanable,
then the union R

1

[ R
2

is also dressed-cleanable.

It is worth emphasizing that the union lemma for bare-
cleanable regions are recovered for a topological subsys-
tem code if its stabilizer subgroup admits a complete set
of geometrically local generators. This is the case for
Bombin’s gauge color code is a three-dimensional sub-
system code.

B. Fault-tolerance and non-local stabilizer
generators

In addition to the technical di�culty, the breakdown of
the union lemma seems to taint fault-tolerance of a sub-
system code. Emergence of geometrically non-local stabi-
lizer generators prevents us from having the union lemma
for bare-cleanable regions. Indeed, this is the case for two
and three-dimensional quantum compass models [19, 22].
We should yet mention that geometrically non-local sta-
bilizer generators are hard to measure reliably and hence
undesirable for physical realizations. Namely, when non-
local stabilizer generators are supported by a large num-

Proof of Bravyi-Koenig theorem

• We can split D-dimensional system into D+1 correctable regions.

(eg) 2 dim

R0 may not be correctable !

(Each cycle is correctable, but 
union may not be correctable).



Fault-tolerance of the code

• The code must have a finite error threshold (loss error).

9

be highly artificial and would possess highly non-local
stabilizer generators.

We now further assume that the family of codes has
a non-zero loss threshold pl > 0 and that a code dis-
tance d grows at least logarithmically with the number
of particles n. Under these reasonable and perhaps in-
dispensable assumptions for fault-tolerance of the code,
we obtain the same thesis as BK’s result for topological
subsystem codes.

Theorem 4. Consider a family of subsystem codes with
geometrically local gauge generators in D spatial dimen-
sion with i) a loss threshold pl > 0 and ii) a code distance

d = ⌦(log1�1/D(n)). Then any dressed logical unitary
that can be implemented by a constant depth geometri-
cally local circuit U must belong to PD.

As a side note, we remark that our proof technique
borrows an idea by Hastings which was used on a di↵erent
topic [25].

Proof. Let us assume for simplicity that U is transver-
sal. The argument leading to lemma 8 su�ces to make
the current proof applicable to a constant depth geomet-
rically local circuit by taking care of some cumbersome
yet inessential caveats.

Imagine that some subset of qubits, denoted as R
loss

,
is lost. This subset R

loss

is chosen so that each site has
an independent probability p

0

< pl of being included in
R

loss

. By definition of loss error threshold, R
loss

must be
correctable (in other words, bare-cleanable) with proba-
bility approaching to unity as the system size n grows.
The key idea is to make use of this randomly generated
bare-cleanable region R

loss

to construct a bare-cleanable
region R

0

which consists of spatially disjoint balls of con-
stant radius.

For any fixed region R, the probability that R is in-

cluded in R
loss

is given by Pr(R ✓ R
loss

) = p|R|
0

. So, given
a ball of radius r � ⇠, it is included in R

loss

with some
constant probability independent of n. Let us now split
the full lattice into unit cells of volume vc = c log(n) as
in Fig. 3. Inside a given unit cell, the probability of hav-
ing no ball of radius r included in R

loss

is O(1/ poly(n))
where the power of n can be made arbitrary large by
increasing a finite constant c. Hence, with probability
approaching to unity, R

loss

includes at least one ball of
radius r in each unit cell. We choose one ball from each
unit cell so that they are spatially disjoint, and denote its
union as R

0

. Then a bare-correctable region R
0

consists
of balls of diameter r that are spatially disjoint with at
most O(log(n)1/D) linear separation. Imagine a skewed
D-dimensional hyper-cubic tiling by drawing lines which
connect balls in R

0

(see Fig. 3). We then fatten m-
dimensional objects to construct a covering of the full
lattice with Rm for m = 0, . . . , D.

It remains to prove that Rm for m > 0 are dressed-
cleanable. Any region with volume smaller than d =
⌦(log1�1/D(n)) is cleanable. For m < D, Rm con-
sists of connected components with volume at most

O(log1�1/D(n)), and hence are dressed-cleanable. For
RD, suppose that there exists a non-cleanable D-
dimensional connected component, denoted as R, with
volume O(log(n)). Then R must support at least one
bare logical Pauli operator U

bare

. Yet, the disentangling
lemma [12] tells that U

bare

can be supported by qubits
that live on the boundary of R, whose volume is at most
O(log1�1/D(n)), leading to a contradiction. Therefore,
RD is dressed-cleanable. Given a bare-cleanable region
R

0

and dressed cleanable regions Rm for m = 1, . . . , D,
lemma 5 implies that transversally implementable U
must be included in PD.

FIG. 3: A construction of a bare-cleanable region R
0

. Red
dots represent balls that are included in randomly generated
subset R

loss

of qubits. Dotted lines mark unit cells with vol-
ume O(log(n)).

A further observation is that constant depth circuits
supported on a string-like region must be Pauli oper-
ators, and in general, constant depth logical operators
supported on a m-dimensional region must be in Pm re-
gardless of the spatial dimension of the lattice D � m.

V. NON-CLIFFORD GATE PROHIBITS
SELF-CORRECTION

The problem of self-correcting quantum memories
seeks to provide a Hamiltonian where the energy land-
scape prevents qubit errors at the physical level from
accumulating and irreversibly introducing a logical er-
ror in contact with a thermal environment [9, 26]. For-
mally, self-correcting quantum memory is defined as a
many-body quantum system where a logical qubit may
be encoded for a macroscopic time [27]. An important
question is whether such a system may exist in three
spatial dimensions. No-go results have ruled out most
of two-dimensional systems and a certain class of three-
dimensional systems [9, 27–29], and no known three-
dimensional model has macroscopic quantum memory
time.

The union of red dots is correctable. 
(This circumvents the breakdown of 
the union lemma).

Fault-tolerant logical gates are 
restricted to PD.

R1

R1

R2

R2

R2

R2

R1

R1

R1

R2

R2

R2R2 R1 R1

R1

In D-dimensions, fault-tolerant gates are in PD. 
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Toric code vs color code ?

considering a d-dimensional lattice. There are d� 1 di↵erent ways of defining the toric code

where X- and Z-type stabilizers are associated with m� 1-cells and m+1 cells respectively

for 1  m  d � 1. In this paper, we restrict our attentions to the toric code with m = 1

where the code has (d � 1)-dimensional X-type logical operator(s) and one-dimensional Z-

type logical operator(s), and electric charges are point-like and magnetic fluxes are (d � 2)-

dimensional objects.

Z Z
Z

Z Z

Z
X X

X

X X

XZ
Z

Z Z
Z
Z

X
X

X

FIG. 2. The toric code and the color code on a hexagonal lattice. Qubits live on edges and vertices

respectively.

The color code is defined on L, which satisfies two extra conditions:

• valence — each vertex belongs to three edges,

• colorability — faces of L can be colored with three colors where two adjacent faces

have di↵erent colors.

For instance, the honeycomb lattice satisfies the valence and colorability conditions (Fig. 2).

In the case of the color code, the qubits are placed at vertices, and the X- and Z-type

stabilizer generators are associated with faces of L, namely

8f 2 F : X(f) =
O
v⇢f

X(v), 8f 2 F : Z(f) =
O
v⇢f

Z(v). (3)

We denote such a code as CC(L). To verify that X- and Z-type stabilizers commute, one

uses the valence and colorability conditions. The d-dimensional color code is defined on a

homogeneous cell d-complex where is a (d + 1)-valence (d + 1) colorable lattice. There are

(d � 1) ways of defining it, but we shall concentrate on the construction where the X-type

8

color codetoric code

• Similarities and differences between the toric code and 
the color code ?

* A talk by Bombin



Main results
(1) The d-dim color code on a closed manifold is equivalent to 
multiple decoupled copies of the d-dim toric code up to a local 
unitary transformation.

• Extends the known result for 2dim (Yoshida2011)

(2) The 2-dim color code with boundaries is equivalent to the 
“folded toric code”.

In two dimensions, we find that the triangular color code with three boundaries, defined

on a lattice obtained from tiling of a sphere, is equivalent to a single copy of the toric code

on a square lattice with boundaries, which is “folded” along a diagonal axis (see Fig. 1). For

d > 2, we find that the color code with d+1 boundaries of d+1 distinct colors is equivalent to

d copies of the toric code which are attached together at the (d � 1)-dimensional boundary.

At this (d � 1)-dimensional boundary, electric charges may condense only when electric

charges from all the d copies of the toric code are simultaneously present. We remark that

the construction of such a boundary may also be concisely understood by the framework of

code welding introduced by Michnicki [? ].

smooth

smooth

rough

folding axis

C

A

Btoric code
color code

boundaries is straightforward. Here we describe a recipe to construct a rough boundary.

Consider the graph L
A

at the B boundary, and imagine that we add one vertex at spatial

infinity of the B boundary. We then draw edges that connect this extra vertex and other

vertices located near the boundary. Then we obtain a graph as depicted in Fig. 1(b).

welded

Let us apply the disentangling scheme by coarse-graining 2-cells with color C. On the

bulk, away from the boundaries, the disentangling unitary creates a system of qubits which

locally look like two copies of the toric code. Yet, on boundaries, something interesting

occurs.

L
A

L
B

We now descibe the explicit local Cli↵ord operator U which decouples a color code with

boundaries into two sheets of a surface code which are folded at some of the original bound-

aries. In particular, we will apply Cli↵ord operations which are local to each of the blue

colored face in the color code. As we will see, the ground space will be mapped to a ground

space of a two copies of a suface code. However, excitations can be coupled along the two

copies and thus, the rest of the spectrum is not of product form.

FIG. 2. Transformation of color code latice into two toric code lattices. Odd labeled quibits are

mapped to the top lattice whereas even labeled qubits are mapped to the bottom lattice.

First let us partition the physical qubits into two sets, which we will be mapped onto top

(odd, 1) and bottom sheets (even, 2) of the surface code. Qubits lying on vertices where

the faces r, g and b are in clockwise order will be mapped to the top sheet whereas vertices

where the faces r, g and b are in counter-clockwise order will be mapped to the bottom

sheet. In addition, we will enumerate qubits belonging to each blue face in counterclockwise

order starting from a top qubit ??. The decoupling map U can be defined independently on
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FIG. 2. The code welding at the C boundary. For two graphs L
A

and L
B

, open edges are drawn

from vertices near the boundaries so that L
A

and L
B

have rough boundaries. We then weld two

codes by identifying the qubits colored in black.

�
On the C boundary of the topological color code, we find that two graphs L

A

and L
B

do

not terminate with either rough or smooth boundary. Instead they are connected smoothly

with each other as depicted in Fig. 1(c). This implies that vertex (plaquette) excitations on

L
A

can be transformed into vertex (plaquette) excitations on L
B

by going through the C

boundary. Imagine that we consider a mirror image of the graph L
B

as depicted in Fig. 1(c).

Then one may view the entire system as a graph L
AB

obtained by connecting L
A

and L
B

at

the C boundary. Therefore, the entire system can be viewed as a single toric code defined

on a graph L
AB

which is folded at the C boundary. Note that the graph L
AB

has two rough

boundaries and two smooth boundaries. Since there is only a single pair of anti-commuting

string-like logical operators, the code supports a single logical qubit. This is consistent with

the fact that the original topological color code also encodes a single logical qubit.
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rough

FIG. 1. The topological color code as a folded toric code.

Motivated by the equivalence between the topological color code and the toric code, we

then ask if non-Cli↵ord logical gates can be fault-tolerantly implemented in the d-dimensional

toric code. Our third result concerns the implementability of the generalized d-qubit control-

Z gate which takes (d � 1) qubits as control qubits and apply Pauli Z on the final qubit

only conditioned if the (d � 1) control qubits are all in |1i.

Result 3 (Logical gate). The d decoupled copies of the d-dimensional toric code with

string-like logical operators admits the generalized d-qubit control-Z gate which can be

fault-tolerantly implemented by local unitary transformations.

In particular, we find that transversal applications of R
d

phase-shit unitary transforma-

tions on the d-dimensional topological color code is equivalent to the generalized d-qubit

control-Z gate acting on d copies of the toric code. Note that the generalized d-qubit

control-Z gate belongs to the d-th level of the Cli↵ord hierarchy, but is outside of d � 1-th

5



Main results (continued...)

(3) Transversal application of Rd gates on the d-dim color 
code is equivalent to the generalized d-qubit control-Z gate 
on d decoupled copies of the d-dim toric code.

|psi>

control 
qubits

belongs to Pd

• The toric code saturates the Bravyi-Koenig bound.



Open questions

• Fault-tolerant logical gates in TQFT ? (eg Beverland et al 2014)

• The number of transversal gates ? (eg Bravyi & Haah 2012)

reducing the overhead of magic state distillations

• Non-local, but finite depth unitary ?

lattice rotations, lattice translations, ...

Thank you very much.

Many open questions, applications ... , 


