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Fault-tolerant logical gates

e How do we implement a logical gate fault-tolerantly ?

|deally, by transversal

in[{ implementation
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The Eastin-Knill theorem (2008)

e Transversal logical gates are not universal for QC

week ending
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Transversal gates play an important role in the theory of fault-tolerant quantum computation due to
their simplicity and robustness to noise. By definition, transversal operators do not couple physical
subsystems within the same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are
required, as it is invariably the case that some encoded gates cannot be implemented transversally. This
observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal.
Here we show that the ability of a quantum code to detect an arbitrary error on any single physical
subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.

DOI: 10.1103/PhysRevLett.102.110502 PACS numbers: 03.67.Lx, 03.67.Pp

Don’t panic ! Fault-tolerant computation is still possible.



The Bravyi-Koenig theorem (2012)
e Under a more physically realistic setting

Logical gate U : low-depth unitary gate (i.e. Local unitary)

Theorem

e For a stabilizer Hamiltonian in D dim, fault-
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D-dim lattice



Clifford hierarchy (Gottesman & Chuang)

Sets of unitary transformations on N qubits

P,, Pauli P! = P,,_,

P; Pauli P} = P,

P, Pauli Pl = P,

Clifford gates \

CNOT, Hadamard, R2 _
Pauli

Pauli operators
X,Y,Z
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Logical operator cleaning

e A logical operator can be “cleaned” from a correctable region.

A “correctable region” supports no logical operator.

A

correctable

correctable

\
logical operator equivalent logical operator



Lemma [Hierarchy]

-

\_

Consider a partition of the entire system into m+1 regions, denoted
by R0, R1, ..., Rm. If all Rj's are correctable, then transversal logical
gates are restricted to m-th level Pm of the Clifford hierarchy.

~N

(eg)

R1 4 correctable
R3 regions

|

RO R2 P3




e Consider arbitrary Pauli logical operators Vo, V1, ... Vm.

Ro, R1, R2, ... Rm-1, Rm Hierarchy

Vo R 2R

-----

V1 v LtV e vV

-----

Vm v v v eV

Jo VARV RV VI £
U1=K(Uo.Vo) AT P

----------

U2=K(U1,V1) iV vV Pm-2

Um-1=K(Um-2Vm-2) { 3¢ 3 3 v v P1(Pauli)

---
------------

Um=K(Um-1,Vm-1) SN I R B/ Complex phase

commutator : K(A,B)=ABA*B*



Proof of the Bravyi-Koenig theorem

* WWe can split D-dimensional system into D+1 correctable regions.

Ry R

R (Ro) R (Ro) i 1\R0\@l_
Ry i Ry IR Ry, B R,
R, (RO) R, (RO | R, ( Ro) By
RQE Ry Ry RgE Ro
[ RO)E R())E Ro:' R
Ry F Ro F Ry F Ro

Fault-tolerant gates are in P2

*Union of spatially disjoint correctable
regions = correctable region

*This is not the case for subsystem codes.
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Erasure Threshold

e Some qubits may be lost (removal errors)...

eg) escape from the trap

p < =  Logical qubit is safe

ploss

erasure threshold

Perror < ploss

against depolarizing error




Theorem. [Loss threshold| Suppose we have a fam-

ily of subsystem codes with a loss talemnce@l > 1/ n] for
some natural number n. Then, any transversally imple-

mentable logical gate must belong to|P,_1|.

[77” logical gate = p;, <1/ n]

Proof sketch

e Assign each qubit to n regions uniformly at random

R1, R2, ... Rn

» All the regions are cleanable since p; > 1/n

e Transversal gates must be in Pn-1



Theorem. [Loss threshold| Suppose we have a fam-

ily of subsystem codes with a loss talemnce@l > 1/ n] for
some natural number n. Then, any transversally imple-

mentable logical gate must belong to|P,_1|.

[77” logical gate = py>1 /n]

Remarks

e Toric code has p=1/2 threshold (related to percolation).

It has a transversal P2 gate (CNOT gate)

e A family of codes with growing n is not fault-tolerant.

* Topological color code in D-dim has PD gate, so its loss
threshold is less than 1/D.



Theorem. [Loss threshold| Suppose we have a fam-

ily of subsystem codes with a loss talemnce@l > 1/ n] for
some natural number n. Then, any transversally imple-

mentable logical gate must belong to|P,_1|.

[77” logical gate = py>1 /n]

One additional remark (due to Leonid Pryadko)

Consider a stabilizer code with at most k-body generators.

If the code has transversal PD logical gate, then

[k > O(D) ]

e D-dim color code is ~2*D body. Fewer-body code?
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Self-correcting quantum memory

e Can we have self-correcting memory in 3dim?

Energy
A e Does topological order exist at T>0 ?




Theorem [Self-correction]
4 )
If a stabilizer Hamiltonian in 3 dimensions has fault-

tolerantly implementable non-Clifford gates, then the

energy barrier is constant.
. /

Proof sketch

e Consider a partition into Ro, R1, R2.

e Suppose that there is no string-like

logical operators.

* Then, Ro, R1, R2 are cleanable, so the
code has P2 (Clifford gate) at most.

e String-like logical operators imply
deconfined particles.




Theorem [Self-correction]
4 )
If a stabilizer Hamiltonian in 3 dimensions has fault-

tolerantly implementable non-Clifford gates, then the

energy barrier is constant.
. /

Remark

e Haah's 3dim cubic code (log(L) barrier) does not
have non-Clifford gates.

e Michnicki's 3dim welded code (poly(L) barrier) does not
have non-Clifford gates.

e 6-dim color code ((4,2)-construction) has non-Clifford
gate and O(L) barrier.

——> * Atalk by Brell
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Theorem [Code distance]
4 )

If a topological stabilizer code in D dimensions has a m-th
level logical gate, then its code distance is upper bounded

by

d S O(LD—I—l—m)

\_ J

Remark

e Bravyi-Terhal bound for D-dim stabilizer codes (previous best)
d < O(LP~1)
e Non-Clifford gate (m>2), our bound is tighter.

e D-dim color code has d=L, saturating the bound.
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Subsystem code (generalization)

e Starting from non-abelian Pauli subgroup

stabilizer code S=(5,95,...) Hytab =~ ) S,
)

subsystemcode G = (G, Go,...) Hoy =30,
)

eg) Kitaev's honeycomb model, Bacon-Shor code, gauge color code

e Subsystem codes require fewer-body terms.

Main result

For a D-dimensional subsystem code with local
generators, fault-tolerantly implementable logical
gates are restricted to PD if the code is fault-tolerant.




Breakdown of the union lemma

e The union lemma breaks down.

(A

dressed logical operator dressed logical operator ?

 Non-local stabilizer operator is closely related to “gapless” spectrum
in the Hamiltonian.



Proof of Bravyi-Koenig theorem

(eg) 2 dim

B |

Jio

R

RO

1

W

* WWe can split D-dimensional system into D+1 correctable regions.

R0 may not be correctable !

(Each cycle is correctable, but
union may not be correctable).



Fault-tolerance of the code

 The code must have a finite error threshold (loss error).

The union of red dots is correctable.
(This circumvents the breakdown of
the union lemma).

Fault-tolerant logical gates are
restricted to PD.

In D-dimensions, fault-tolerant gates are in PD.



Summary of the talk
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IV

L

the toric code

A joint work with

Aleksander Kubica Fernando Pastawski



Toric code vs color code ?

e Similarities and differences between the toric code and
the color code ?

toric code color code

— * Atalk by Bombin



Main results

(1) The d-dim color code on a closed manifold is equivalent to
multiple decoupled copies of the d-dim toric code up to a local
unitary transformation.

e Extends the known result for 2dim (Yoshida2011)

(2) The 2-dim color code with boundaries is equivalent to the
“folded toric code”.

folding axis
smooth (..,\' A
X4
X4
X4
X4
= o’ = color code
®) . y o N~V B
S torigccode § —
> Pd > C
X4
X 4
X 4
X4
X4
X4

o’ smooth



Main results (continued...)

(3) Transversal application of Rd gates on the d-dim color
code is equivalent to the generalized d-qubit control-Z gate
on d decoupled copies of the d-dim toric code.

|psi>

-

belongs to Pd

A\
J/

control
qubits

o—0O0—0O

\

e The toric code saturates the Bravyi-Koenig bound.




Open questions

e Fault-tolerant logical gates in TQFT ? (eg Beverland et al 2014)

e The number of transversal gates ? (eg Bravyi & Haah 2012)

reducing the overhead of magic state distillations

e Non-local, but finite depth unitary ?

lattice rotations, lattice translations, ...

Many open questions, applications ...,

Thank you very much.



